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In this work the dynamics of a chain consisting of a set of beads attached to the ends of segments of fixed
lengths is investigated. The chain fluctuates at constant temperature in a viscous medium. For simplicity, all
interactions among the beads have been switched off and the number of spatial dimensions has been limited to
two. In the limit in which the chain becomes a continuous system, its behavior may be described by a path
integral, in which the rigid constraints coming from the infinitesimally small segments are imposed by means
of a functional � function. In this way a model of the dynamics of the chain is obtained, which closely
resembles a two-dimensional nonlinear � model. The partition function of this generalized nonlinear � model
is computed explicitly for a ring-shaped chain in the semiclassical approximation. The behavior of the chain at
both long and short scales of time and distances is investigated. The connection between the generalized
nonlinear � model presented here and the Rouse model is discussed.
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I. INTRODUCTION

Subject of this work is a study of the dynamics of a con-
tinuous chain which is subjected to thermodynamic fluctua-
tions at constant temperature T. The chain is represented as
the limit of a system of beads and links of fixed length, in
which the number N of beads becomes infinite, while the
length a of the links goes to zero in such a way that the total
length of the chain L=Na remains a finite constant. Problems
of this kind are encountered, for example, in polymer phys-
ics, because with some approximation long flexible polymers
may be regarded as continuous chains �1�. It is thus sponta-
neous to consider an isolated polymer fluctuating in some
viscous environment as a concrete realization of the system
investigated here. A few applications in which the dynamics
of a chain turns out to be relevant are mentioned in Ref. �2�.
In particular, in Ref. �2� six regimes of the chain dynamics
are distinguished, which apply not only to the well-known
case of a polymer in a solution, but also to other cases, like
for instance those of an isolated cold chain and of a hot
polymer in the vapor phase.

From polymer physics, one may borrow the standard ap-
proach to the dynamics of a chain. It consists of considering
the fluctuations of the chain as a stochastic process, which is
usually described with the help of the Langevin equations or,
alternatively, of the Fokker-Planck-Smoluchowski equations
�1�. This approach leads to the well-known models of Rouse
�3� and Zimm �4� which allow a satisfactory understanding
of the main properties of polymers in solutions. One major
drawback of these coarse-grained models is that they do not
take into account the rigid constraints which are necessary in
order to keep constant the length of the links connecting the
beads. The Rouse and Rouse-Zimm equation consider in-
stead beads joined together by springs, where the local

spring is infinitely extensible. In this way the length of the
chain is not fixed and is allowed to become infinite. More-
over, in the continuous limit the Rouse equation is nothing
but the stochastic equation �Langevin equation� for the clas-
sical Wiener measure, which yields paths without well-
defined tangent vectors �1�. These problems have been tack-
led by various attempts, see, e.g., �5,6�. However, the correct
use of rigid constraints in �stochastic� dynamics requires
some mathematical effort �7,8�, in contrast to the static cases
where rigid constraints can be implemented by Dirac � func-
tions in the partition functions. For instance, the probability
distribution of N ideal closed chains topologically linked to-
gether may be represented as a path integral of N noninter-
acting particles with the insertion of Dirac � functions which
enforce the topological constraints on their trajectories
�9–12�.

Here a strategy similar to that used for static chains will
be applied to dynamics. We consider the distribution �disc of
the probability that a fluctuating chain passes from a initial
discrete spatial conformation �i to a final one � f in a given
interval of time �t= tf − ti. The idea behind our approach is
based on the fact that the beads of the chain may be regarded
as a set of N Brownian particles with constrained trajectories.
The constraints arise due to the presence of the N−1 links of
fixed lengths connecting the beads. As a consequence, it is
possible to write the probability distribution �disc in the form
of a path integral describing the fluctuations of N Brownian
particles with the insertion of Dirac � functions. The latter
are needed in order to impose the necessary conditions on
the trajectories of the particles. For simplicity, possible inter-
actions among the beads have been switched off, including
hydrodynamic interactions and only the two-dimensional
case has been discussed.

The limit in which the chain becomes continuous is not
entirely trivial. It involves the vanishing of three crucial
quantities, the mass of the beads, their mobility and their
size. After performing this limit very carefully, we obtain as
a final result the probability distribution � of the continuous
chain. It is found that � consists of a path integral which
closely resembles the partition function of a two-dimensional
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nonlinear � model �13�. For this reason the obtained model
will be called the generalized nonlinear � model �GNLSM�.
The main difference from the nonlinear � model is that the
holonomic constraint is replaced in the GNLSM by a non-
holonomic constraint, which requires that the tangent at ev-
ery point of the trajectory of the chain is a unit vector. The
Lagrange multiplier that imposes this nonholonomic con-
straint plays the same role of pressure in the hydrodynamics
of incompressible fluids, a fact already noted in Ref. �2�. The
“incompressibility” is related to the fact that it is not possible
to “compress” the lengths of the links joining the beads. The
GNLSM is well suited to study all situations in which it is
possible to assume that the thermodynamic fluctuations and
the conformational changes are small and slow. Systems sat-
isfying these requirements are for instance cold chains or
chains in a very viscous medium.

In principle, the GNLSM is exactly solvable after per-
forming two Gaussian integrations, but the presence of non-
trivial boundary conditions complicates the calculation of the
probability distribution �. Even the method of the effective
potential, which is useful to investigate phase transitions in
nonlinear � models, cannot be easily applied. As a matter of
fact, in the nonlinear � model the effective potential is com-
puted assuming that the field configurations which minimize
the action are constants. However, in the GNLSM, configu-
rations of this kind correspond to the situation in which the
chain has collapsed to a point and are thus unphysical. De-
spite these difficulties, it is possible to compute the probabil-
ity distribution � and the associated generating functional of
the correlation functions of the bond vectors ��J� using a
background field approximation, in which small Gaussian
fluctuations are considered in the background of a dominat-
ing classical conformation. The initial and final conforma-
tions of the chain are picked up by choosing in a suitable
way the background classical solution and by tuning the
boundary conditions of the Gaussian fluctuations. The semi-
classical approximation is valid in the case of low tempera-
tures or of highly viscous media, exactly the regimes in
which the GNLSM can be applied. The explicit formulas of
� and ��J� derived here show that the fluctuations which
deform the chain along directions which are tangent to the
trajectory of the classical background conformation propa-
gate differently from the normal fluctuations. This fact is a
direct consequence of the presence of rigid constraints and
could be relevant, for example, in the theory of formation of
single polymer crystals �14�.

The material presented in this paper is organized as fol-
lows. In Sec. II the form of the Lagrangian of a classical
discrete chain in two dimensions has been derived in polar
and in Cartesian coordinates. No restrictions are posed to the
motion of the discrete chain. The limit to a continuous chain
is however performed assuming that one of the ends of the
chain is fixed. The calculation in polar coordinates shows
that one crucial term in the Lagrangian disappears in the
continuous limit. This fact simplifies the classical equations
of motion of the chain. The probability distribution � of the
fluctuating chain is computed in Sec. III using a path-integral
approach. Some subtleties arising when taking the continu-
ous limit in the probability distribution of the discrete chain
are discussed. Section IV is dedicated to the study of the

classical solutions of the GNLSM. It is shown that the only
possible classical solutions are time independent, apart from
rigid translations with constant velocity of the whole chain.
The computation of the probability distribution � and of the
generating functional ��J� for a ring-shaped chain is per-
formed in the semiclassical approximation in Sec. V. The
physical interpretation of the results obtained in the preced-
ing sections is presented in Sec. VI. The equilibrium limit of
the GNLSM and its connection with the Rouse model are
studied in Sec. VII. Finally, in Sec. VIII the conclusions are
drawn and possible future developments are discussed.

II. CLASSICAL DYNAMICS OF A CONTINUOUS CHAIN

Let us consider a discrete chain of N−1 segments of fixed
lengths l2 , . . . , lN in the two-dimensional plane. Each seg-
ment Pi+1Pi is completely specified by the positions of its
end points Pi+1 and Pi. In Cartesian coordinates �x ,y� these
positions are given by the radius vectors

Ri = �xi,yi�, i = 1, . . . ,N . �1�

The segments are joined together at the points Pi, where 2
� i�N−1, see Fig. 1, while P1 and PN are the ends of the
chain. Moreover, at each point Pi, with i=1, . . . ,N, a mass mi
is attached. In the following we restrict ourselves to the case
of a free chain. We will see below that the addition of inter-
actions is straightforward.

At this point we compute the kinetic energy of the above
system,

Kdisc = �
i=1

N
mi

2
�ẋi

2 + ẏi
2� . �2�

The subscript “disc” on the left-hand side of Eq. �2� is to
recall that we are considering at the moment a discrete chain
with N−1 segments. For future purposes, it will be conve-
nient to introduce the kinetic energy of point Pi,

P
1m1
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FIG. 1. A chain with N segments. Let us note that the end point
P1 is not bound to stay at a fixed distance with respect to the origin
of the Cartesian reference system.
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Ki =
mi

2
�ẋi

2 + ẏi
2� . �3�

Of course, to Eq. �2� one should also add the constraints

�xi − xi−1�2 + �yi − yi−1�2 = li
2, i = 2, . . . ,N �4�

in order to enforce the requirement that the segments have
fixed length li. It is possible to eliminate these constraints
passing to polar coordinates,

xi = �
j=1

i

lj cos � j, yi = �
k=1

i

lj sin � j, i = 1, . . . ,N . �5�

� j is the angle formed by segment j with the y axis, see Fig.
1. According to our settings, the radial coordinates lj are
constants for j=2, . . . ,N. The length l1, which denotes the
distance of the end point x1 ,y1 from the origin, is not fixed,
so that l1= l1�t� is allowed to vary with the time t. From Eq.
�5� the velocity components of the ith segment may be writ-
ten as follows:

ẋi = − �
j=1

i−1

lj�̇ j sin � j − li�̇i sin �i + l̇1 cos �1, i = 2, . . . ,N ,

�6�

ẏi = �
j=1

i−1

lj�̇ j cos � j + li�̇i cos �i + l̇1 sin �1, i = 2, . . . ,N ,

�7�

ẋ1 = − l1�̇1 sin �1 + l̇1 cos �1, �8�

ẏ1 = l1�̇1 cos �1 + l̇1 sin �1. �9�

Separating the contribution coming from the first i−1 vari-
ables as shown in Eqs. �6� and �7�, the kinetic energy Ki of
the ith point can be expressed in terms of the kinetic energy
Ki−1 of the �i−1�th segment,

Ki =
mi

mi−1
Ki−1 +

mi

2
li
2�̇i

2 + mi�
j=1

i−1

lilj�̇i�̇ j cos�� j − �i�

+ mili�̇il̇1 sin��1 − �i� . �10�

It is possible to solve the above recursion relation and to find
a closed expression of Ki in polar coordinates. If we do that,
at the end, the total kinetic energy of the discrete chain
becomes

Kdisc =
M

2
�l1

2�̇1
2 + l̇1

2� + l1�̇1�
i=1

N

�
j=1

i−1

mili−j+1�̇i−j+1

	cos��i−j+1 − �1� + l̇1�
i=1

N

�
j=1

i−1

mili−j+1�̇i−j+1

	sin��1 − �i−j+1� + �
i=1

N

�
j=1

i−1

li−j+1
2 mi

2
�̇i−j+1

2

+ �
i=1

N

�
j=1

i−1

�
k=2

i−j

mili−j+1lk�̇i−j+1�̇k

	cos��i−j+1 − �k� , �11�

where M =�i=1
N mi is the total mass of the chain �23,15�.

We wish now to perform the limit in which the chain of
N−1 segments becomes a continuous system �24,16�. To this
purpose, it is convenient to consider the indices i , j ,k , . . .
appearing in Eq. �11� as discrete variables taking values in a
one-dimensional lattice with N points. Quantities f i carrying
the index i may be interpreted as discrete functions of i.
Their variations �f i are given by �f i= f i+1− f i. Clearly, �i
=1, i.e., the spacing between two neighboring points in the
lattice is 1. In order to proceed, we rescale the distances in
the lattice in such a way that the spacing in the new lattice
will be a. To this purpose, we perform the transformations
i→si, f i→ f�si�, where the new variable si has variation
�si=si+1−si=a. The next step is to compute the kinetic en-
ergy of Eq. �11� in the limit

N → 
, a → 0, Na = L , �12�

in which the product Na remains finite and is equal to the
total length of the chain L. Clearly, in the limit �12�, the
right-hand side of Eq. �11� will diverge unless we suppose
that the masses mi and the lengths li of the segments are
going to zero in a suitable way. Reasonable assumptions are

li → l�si� = a��si�, mi → m�si� = a��si� , �13�

where ��si� and ��si� are, respectively, the distribution of
length and of mass along the chain. To be consistent with our
settings, the distributions ��si� and ��si� must be normalized
as follows:

�
i=1

N

��si��si = L, �
i=1

N

��si��si = M . �14�

While it would be interesting to study chains in which the
segments are allowed to have different lengths and the points
have different masses, for simplicity we will suppose from
now on that the length and mass distributions in the chains
are uniform, i.e.,

��si� = 1 for i = 2, . . . ,N

and ��si� =
M

L
for i = 1, . . . ,N . �15�

In the discrete case �compare with Eq. �13�� this implies that
all segments of the chain and the masses mi are equal,

li = a for i = 2, . . . ,N and mi =
M

L
a for i = 1, . . . ,N .

�16�

At this point we are ready to pass to the continuous limit.
Functions of discrete variables will be substituted with func-
tions of continuous variables, while sums will be replaced
with integrals according to the following rules:
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f�si� → f�s�, �
i=1

N

�si → �
0

L

ds . �17�

After a few calculations one finds the following:

Kdisc�t� → K�t� , �18�

where

K�t� =
M

2
�l1

2�t��̇1
2�t� + l̇1

2�t�� + �̇1�t�l1�t�
M

L
�

0

L

ds�
0

s

du�̇

	�t,s − u�cos���t,s − u� − �1�t��

+ l̇1�t�
M

L
�

0

L

ds�
0

s

du�̇�t,s − u�sin��1�t� − ��t,s − u��

+
M

L
�

0

L

ds�
0

s

du�
0

s−u

dv�̇�t,s − u��̇�t,v�

	cos���t,s − u� − ��t,v�� . �19�

Let us note that the right-hand side of Eq. �19� contains four
terms, while the original discrete version of the kinetic en-
ergy in Eq. �11� contained five terms. In fact, the contribu-
tions proportional to �̇i−j+1

2 of Eq. �11� disappear in the con-
tinuous limit.

Equation �19� may be simplified by performing the fol-
lowing change of variables:

u� = s − u, du� = − du . �20�

Using also the formula

�
0

L

ds�
0

s

du�f�u�� = �
0

L

ds�L − s�f�s� , �21�

which is valid for any integrable function f�s�, we obtain

K�t� =
M

2
�l1

2�t��̇1
2�t� + l̇1

2�t�� + �̇1�t�l1�t�
M

L

	�
0

L

ds�L − s��̇�t,s�cos���t,s� − �1�t�� + l̇1�t�
M

L

	�
0

L

ds�L − s��̇�t,s�sin��1�t� − ��t,s�� +
M

L

	�
0

L

ds�L − s��
0

s

du�̇�t,s��̇�t,u�cos���t,s� − ��t,u�� .

�22�

As a further simplification, one could fix the point P1 in
some location, so that

l̇1 = �̇1 = 0. �23�

Exploiting the above assumptions in Eq. �22�, we find that
the Lagrangian L0�t�=K�t� of the ideal chain is given by

L0�t� =
M

L
�

0

L

ds�L − s��
0

s

du�̇�t,s��̇�t,u�cos���t,s�

− ��t,u�� . �24�

What happens if, instead of polar coordinates, we choose
Cartesian coordinates in order to compute the continuous
limit of the kinetic energy �2�? With the help of the prescrip-
tions given in Eqs. �12�–�17� and related comments, it is easy
to show that the Lagrangian of the ideal chain L0,disc=Kdisc
becomes in Cartesian coordinates

L0�t� =
M

2L
�

0

L

ds�ẋ2�t,s� + ẏ2�t,s�� . �25�

Of course, the fields x�t ,s� and y�t ,s� are not independent,
because they satisfy the relationship

�x��t,s��2 + �y��t,s��2 = 1, �26�

where x�= �x
�s and y�= �y

�s . Equation �26� is the continuous ver-
sion of the constraints �4�. As we see, the form of the kinetic
energy is much simpler than that of its analog in polar coor-
dinates, but the price to be paid is the cumbersome presence
of the constraints �26�. If l1 and �1 are constants, according
to the assumption of Eq. �23�, one should also add to Eqs.
�25� and �26� the boundary conditions

x�t,0� = l1 cos �1, y�t,0� = l1 sin �1. �27�

In this way one end of the chain is fixed at the given point
�x�t ,0� ,y�t ,0��= �l1 cos �1 , l1 sin �1�. It is possible to imple-
ment other boundary conditions. For instance, one could ask
that the chain forms a closed loop,

x�t,0� = x�t,L�, y�t,0� = y�t,L� . �28�

To show that the Lagrangian in Cartesian coordinates �25�
and the Lagrangian in polar coordinates �24� are equivalent,
it is possible to perform in Eq. �25� the field transformations

x�t,s� = �
0

s

du cos ��t,u� + l1 cos �1,

y�t,s� = �
0

s

du sin ��t,u� + l1 sin �1. �29�

These are analogous to the discrete changes of variables of
Eqs. �6� and �7� in the case in which one end of the chain is
kept fixed. It is easy to check that, after the substitutions �29�
in Eq. �25�, one obtains exactly Eq. �24� as desired.

For future convenience we introduce also the vector no-
tation

R�t,s� = �x�t,s�,y�t,s�� . �30�

In this way we get for the functional L0 and the constraint
�26� the more compact expressions

L0�t� =
M

2L
�

0

L

dsṘ2�t,s� �31�

and
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�R��t,s��2 = 1. �32�

Finally, Eqs. �27� and �28� become, respectively,

R�t,0� = �l1 cos �1,l1 sin �1� , �33�

R�t,0� = R�t,L� . �34�

It is now easy to add the interactions. For example, let us
suppose that the segments of the chain are immersed in an
potential V1�r� and that there are also internal interactions
associated to a two-body potential V2�r1 ,r2�. In this case, the
Lagrangian L0 of Eq. �31� generalizes to

L = L0 + L1 + L2, �35�

where

L1 = − �
0

L

dsV1�R�t,s�� �36�

and

L2 = − �
0

L

ds1�
0

L

ds2Vint�R�t,s1�,R�t,s2�� . �37�

III. DYNAMICS OF A CHAIN IMMERSED
IN A THERMAL BATH

In this section we address the problem of describing the
dynamics of a random chain subjected to thermodynamic
fluctuations and immersed in an environment held at con-
stant temperature T.

The strategy in order to treat this problem is to consider
the discrete chain as a set of N particles of mass m perform-
ing a random walk while subjected to the discrete constraints
�4�, which we rewrite here for convenience as follows:

�Rn�t� − Rn−1�t��2

a2 = 1, n = 2, . . . ,N . �38�

It is additionally required that at the instants t= ti , tf the nth
particle is located, respectively, at the initial point Ri,n and at
the final point R f ,n for n=1, . . . ,N. For simplicity, the inter-
actions among the particles are switched off including hydro-
dynamic forces �25�.

If one could ignore the constraints, the probability distri-
bution �N of the system of N particles would be

�N = �
n=1

N

�n�tf − ti,R f ,n,Ri,n� , �39�

where �n is the probability distribution describing the free
random walk of the nth particle. As it is well known, �n
satisfies the Fokker-Planck-Smoluchowski equation

��n

��tf − ti�
= D

�2�n

�Rn
2 , �40�

D represents the diffusion constant. Equation �40� is com-
pleted by the boundary condition

�n�0,R f ,n,Ri,n� = ��R f ,n − Ri,n� . �41�

The solution of Eq. �40� can be written up to an irrelevant
normalization factor A in the form of a path integral,

�n = A�Rn�tf�=Rf ,n

Rn�ti�=Ri,n

dRn�t�e−	ti

tf�Ṙn
2/4D�dt. �42�

Substituting Eq. �42� in Eq. �39�, the probability distribution
�N becomes

�N = AN�R1�tf�=Rf ,1

R1�ti�=Ri,1

dR1�t� ¯ �RN�tf�=Rf ,N

RN�ti�=Ri,N

dRn�t�

	exp
− �
n=1

N �
ti

tf Ṙn
2�t�

4D
dt� . �43�

Now we must add to the above free random walks the con-
straints �38�. This will be done by inserting in the probability
distribution of Eq. �43� a product of Dirac � functions which
enforce exactly these constraints,

�disc = C�R1�tf�=Rf ,1

R1�ti�=Ri,1

dR1�t� ¯ �RN�tf�=Rf ,N

RN�ti�=Ri,N

dRn�t�e−A0,disc

	�
n=2

N

�
 �Rn�t� − Rn−1�t��2

a2 − 1� . �44�

In the above equation C denotes a normalization constant.
Moreover, we have introduced the functional A0,disc defined
as follows:

A0,disc = �
n=1

N �
ti

tf Ṙn
2�t�

4D
dt . �45�

The distribution �disc measures the probability that a chain
starting from the initial configuration �Ri,1 , . . . ,Ri,N of its
segments ends up after a time tf − ti in the configuration
�R f ,1 , . . . ,R f ,N. We note that the diffusion constant D ap-
pearing in �45� satisfies the relation

D = kT , �46�

where  is the mobility of the particle, k is the Boltzmann
constant, and T is the temperature. This fact allows us to
rewrite the quantity A0,disc in a form which reflects the anal-
ogy of the present problem with a quantum mechanical prob-
lem,

A0,disc =
1

2kT�
�
n=1

N �
ti

tf m

2
Ṙn

2�t�dt . �47�

In the above equation we have set

� = m . �48�

The parameter � has the dimension of a time. Indeed, � is the
relaxation time that characterizes the rate of the decay of the
drift velocity of the particles composing the chain. The quan-
tity A0,disc appears now as a real action of a set of N quantum
particles of mass m in complex time, with the constant factor
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� = 2kT� �49�

replacing the Planck constant �. This is not a surprise, be-
cause the connections between quantum mechanics and
Brownian motion are well known. Indeed, one may show
that the uncertainties in the position and momentum of a
Brownian particle are related to the constant 2mD=� �17�.

At this point we are ready to take in the probability dis-
tribution �44� the continuous limit �12�. By introducing the
rescaled variables sn as we did in Sec. II, the probability
distribution �44� becomes

�disc = C�
n=1

N �R�tf,sn�=Rf�sn�
R�ti,sn�=Ri�sn�

dR�t,sn�e−1/2kT�	ti

tfM/2L�n=1
N Ṙ2�t,sn��sn

	�
n=2

N

�
 �R�t,sn� − R�t,sn−1��2

a2 − 1� . �50�

In the limit N→
, a→0, Na=L we obtain from �disc the
probability distribution � of the continuous chain,

� = C�R�tf,s�=Rf�s�
R�ti,s�=Ri�s�

DR�t,s�e−A0�
� �R�t,s�
�s

�2

− 1� ,

�51�

where

A0 =
1

2kT�
�

ti

tf

dt�
0

L

ds
M

2L
Ṙ2�t,s� . �52�

This is the desired result. Formally, the normalization con-
stant C may be written as a path integral over the initial and
final configurations,

C−1 =� DRi�s�DR f�s��R�tf,s�=Rf�s�
R�ti,s�=Ri�s�

DR�t,s�

	e−A0�
� �R�t,s�
�s

�2

− 1� . �53�

The model described by Eqs. �51� and �52� will be called
here the generalized nonlinear � model due to its close re-
semblance to a two-dimensional nonlinear � model. The
most striking difference is that the constraint R2=1 of the
nonlinear � model has been replaced by the condition �32�,
which contains the derivatives of the bond vectors R and it is
thus nonholonomic.

Before concluding this section, we would like to complete
the derivation of the probability distribution of Eqs. �51� and
�52� by discussing the continuous limit of the relaxation time
�. This parameter has been defined in Eq. �48� as the product
of the mobility  with the mass m of the beads. When the
distance a between the beads goes to zero, m goes to zero as
well according to Eq. �16�. On the other side, with decreas-
ing values of a, two contiguous beads will become closer and
closer until they will eventually merge one into another. To
avoid this unphysical situation, one should add to the con-
tinuous limit �12� the requirement that the dimensions of the
beads vanish together with a. Supposing for instance that the

beads are circles of radius �, for dimensional reasons one is
lead to set �=ca, where c is a dimensionless proportionality
factor. As it is intuitive, when the size of a bead decreases, its
mobility  increases. The increasing of  compensates the
vanishing of m, so that the product �=m remains finite.
This fact can be verified rigorously in three dimensions using
the well-known Stokes formula of the mobility.

IV. CLASSICAL SOLUTIONS OF THE GENERALIZED
NONLINEAR � MODEL

To get rid of the � function appearing in the formulation
of the generalized � model of Eqs. �51� and �52�, it will be
convenient to introduce a Lagrange multiplier �=��t ,s� and
to use the Fourier representation of the Dirac � function.
Moreover, we add a coupling of the bond vectors R�t ,s� with
an external source J�t ,s�. In this way the generating func-
tional ��J� of the correlation functions of the bond vectors
may be written in the form

��J� =� DRD� exp�− �
ti

tf

dt�
0

L

ds
 M

2L�
Ṙ2 + i��R�2 − 1�

+
1

�
J · R�� . �54�

Let us note that, for the sake of generality, in Eq. �54� no
boundary conditions for the relevant fields have been speci-
fied. As it stands, Eq. �54� could be applied both to open or
closed chains. Moreover, in the case of open chains both
possibilities of free or fixed end points are allowed. It turns
out that the degree of complexity of the computation of ��J�
strongly depends on the choice of boundary conditions.

Let us now derive the solutions Rcl and �cl of the classical
equations of motion associated with the generating func-
tional ��J� of Eq. �54�,

M

L

�2R

�t2 = J , �55�

��

�s

�R

�s
+ �

�2R

�s2 = 0, �56�

� �R

�s
�2

= 1. �57�

It is easy to see that, due to the constraint �57�, the current J
must depend only on the variable t, i.e., J�t ,s�=J�t�. Always
for the same reason, it is possible to check that Eq. �56� is
inconsistent unless �cl=const�0 or �cl=0. Depending on the
fact that �cl is zero or not, one finds that the relevant solu-
tions of Eqs. �55�–�57� may be divided into two groups,
which we call here solutions of type A and of type B. The
solutions of type A are characterized by the condition �cl
=0 and may be summarized as follows:

Type A solutions:

�cl = 0, �58�
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Rcl�t,s� = R0,A + Vt + R1,A�t� + R2,A�s� , �59�

where R0,A and V are constant vectors,

R1,A�t� = �
ti

tf

dt�G�t,t��J�t�� �60�

and

R2,A�s� = �
0

s

du�cos ��u�,sin ��u�� . �61�

Here ��u� is an arbitrary function of u, while in Eq. �60�
G�t , t�� denotes the Green function which solves the differ-
ential equation

M

L

�2G�t,t��
�t2 = − ��t − t�� . �62�

Type A solutions admit closed chain configurations. In that
case, the functions ��s� must satisfy the additional periodic-
ity condition

��s + L� = ��s� . �63�

Besides the classical solutions of type A, there are also the
solutions of type B listed below:

Type B solutions:

�cl = const � 0, �64�

Rcl�t,s� = R0,B + Vt + R1,B�t� + R2,B�s� , �65�

where R0,B and V are constants vectors,

R1,B�t� = �
ti

tf

dt�G�t,t��J�t�� �66�

and

R2,B�s� = �0,s� . �67�

In the absence of the external source J�t�, this type of solu-
tion corresponds to a configuration in which the chain is
stretched along the y axis with one end in the point R0,B and
the other end in the point R0,B+ �0,L�. No closed loop con-
figuration is allowed. Of course, the stretched chain may be
oriented in a different way by means of a rotation.

We would like to stress the fact that, if there are no ex-
ternal currents, both type A and type B of classical solutions
are static, i.e., they do not depend on time apart from the
rigid translations of the whole chain with constant velocity
V. This result is confirmed if one studies the equations of
motion corresponding to the Lagrangian �24� obtained using
polar coordinates. The only allowed classical solutions for
the field ��t ,s� are in fact time independent.

V. COMPUTATION OF THE GENERATING FUNCTIONAL
�†J‡ IN THE SEMICLASSICAL APPROXIMATION

The exact computation of ��J� is a formidable problem
despite the simplicity of the action of the generalized nonlin-
ear � model. One of the main difficulties is the presence of

the nonholonomic constraint �R��2=1 in the path integral
�51�. In principle, this cumbersome condition may be easily
eliminated by introducing a scalar field ��t ,s� and perform-
ing the formal substitutions of Eq. �29�,

R�t,s� = �
0

s

du�cos ��t,u�,sin ��t,u�� . �68�

Here we have assumed for simplicity that the chain has one
fixed end in the origin of the coordinates, so that R�t ,0�
= �0,0� in agreement with Eq. �68�. To show that after the
field transformation �68� the constraint disappears from the
path integral �51�, we use the following relation which will
be proved in Appendix A for a generic functional f�R�t ,s��:

� DR�t,s�f�R�t,s�����R��2 − 1�

= N� D��t,s�f
�
0

s

du�cos ��t,u�,sin ��t,u��� ,

�69�

where N is an irrelevant constant. In our particular case, in
which

f�R�t,s�� = exp
− �
ti

tf

dt�
0

L

ds
M

2�L
Ṙ2� , �70�

one obtains from Eq. �69�,

� = N� D��t,s�e−�1/��	ti

tfdtL0 �71�

with L0 being the Lagrangian defined in Eq. �24�. As we see,
the Dirac � function with the constraint is no longer present
in the path integral �71�, but the Lagrangian of Eq. �24� is
both nonlocal and nonlinear.

In the following, we will stick to Cartesian coordinates
limiting ourselves to study small Gaussian fluctuations of the
field R�t ,s� around the classical solutions derived in the pre-
ceding section. To this purpose, in Eq. �54� we split both
fields R�t ,s� and ��t ,s� into classical contributions Rcl ,�cl

and statistical corrections �R ,��,

R�t,s� = Rcl�t,s� + �1/2�R�t,s� , �72�

��t,s� = �cl + �1/2���t,s� . �73�

Moreover, it will also be convenient to split the external
source J in an analogous way,

J�t,s� = Jcl�t� + �1/2�J�t,s� , �74�

where Jcl�t� denotes the current depending only on the time t
appearing in Eqs. �60� and �66�. Due to the fact that the
Lagrange multiplier � is just an auxiliary field, it is possible
to choose for its variation �� trivial boundary conditions at
the initial and final instants,

���ti,s� = ���tf,s� = 0. �75�

The boundary conditions of �R�t ,s� will be fixed later.
At this point, we expand the action

PATH-INTEGRAL APPROACH TO THE DYNAMICS OF A … PHYSICAL REVIEW E 77, 021802 �2008�

021802-7



A = �
ti

tf

dt�
0

L

ds
 M

2L�
Ṙ2 + i��R�2 − 1� +

1

�
J · R� �76�

appearing in the path integral �54� with respect to the quan-
tities �R ,��, and �J. Since the latter are supposed to be
small corrections of the dominating classical solutions, we
stop the expansion at the second order,

A = Acl + �A�1� + �A�2�. �77�

At the zeroth order we have

Acl =
1

�
�

ti

tf

dt�
0

L

ds
 M

2L
Ṙcl

2 + Jcl · Rcl� . �78�

This is just the action A in which the fields have been re-
placed by their classical configurations, which may be either
of type A or of type B. In both cases, the term �cl�R�2−1�,
which in principle should be present in Eq. �78�, has been
omitted because Eq. �57� forces it to vanish identically. Let
us now compute the first-order contribution �A�1�. Usually,
first-order contributions vanish after exploiting the classical
equations of motion. In our case this is in general not true.
The reason is that, due to the nontrivial boundary conditions
satisfied by R�t ,s�, nonzero boundary terms may still appear
in �A�1�. Despite this fact, it is possible to show that �A�1�

vanishes at least in the following two situations:
�1� Closed chains satisfying the boundary conditions �34�.
�2� Open chains in which both ends are fixed, so that

besides the condition �33� also the following one is valid:
R�t ,L�= �x0,L ,y0,L�, where x0,L and y0,L are constants.

Assuming that one of the above two conditions is verified,
it is possible to set

�A�1� = 0. �79�

Thus, we are left only with the computation of the second-
order corrections �A�2�. After simple calculations, one finds

�A�2� = �
ti

tf

dt�
0

L

ds
 M

2L
�Ṙ · �Ṙ + i��cl��R��2

+ 2i��Rcl� · �R���� + �J · �R� . �80�

Putting together all the above results, it is possible to con-
clude that, within the present Gaussian approximation, the
expression of ��J� reduces to

��J� = eAclZ�J� , �81�

where

Z�J� =� D�RD��e−�A�2�
�82�

and Acl and �A�2� are, respectively, given in Eqs. �78� and
�80�.

From this point on we will consider only chain configu-
rations which are closed, so that both classical configurations
Rcl and their statistical corrections �R must satisfy the
boundary conditions in s of Eq. �34�. In the Lagrange multi-
plier sector, besides the trivial boundary conditions in time of

Eq. �75�, we require also the following ones with respect to
the variable s:

���t,0� = ���t,L� . �83�

The case of closed chains is particularly interesting because
under this assumption the path integral appearing on the
right-hand side of Eq. �82� may be rewritten in such a way
that it closely resembles the generating functional of a field
theory of a one-dimensional system at finite temperature. In
this field theory the coordinate s plays the role of time while
the real time t becomes the spatial coordinate of the one-
dimensional space. We still need to specify the boundary
conditions with respect to the time for the fields �R. We fix
them in such a way that the Gaussian path integration over
these fields in the generating functional of Eq. �82� will be as
simple as possible. To this purpose, reasonable choices are
the following.

The Dirichlet-Dirichlet boundary conditions are

�R�ti,s� = 0, �R�tf,s� = 0. �84�

The Dirichlet-Neumann boundary conditions are

�R�ti,s� = 0, � �R�t,s�
�t

�
t=tf

= 0. �85�

The Neumann-Dirichlet boundary conditions are

� ��R�t,s�
�t

�
t=ti

= 0, �R�tf,s� = 0. �86�

The Neumann-Neumann boundary conditions are

� ��R�t,s�
�t

�
t=ti

= 0, � ��R�t,s�
�t

�
t=tf

= 0. �87�

At this point we are ready to perform the Gaussian integra-
tions over the fields �R in the generating functional Z�J�
given in Eq. �82�. After some integrations by parts, which do
not produce boundary terms thanks to the boundary condi-
tions �34� and �83�, one finds

Z�J� = C1� D��e−S���� �88�

with

S���� =
1

2
�

0

L

ds�
ti

tf

dtdt�G�t,t��

	�− 4�2���t,s�
�Rcl�s�

�s
·

�2

�s2
���t�,s�
�Rcl�s�

�s
�

− 2i����t,s�
�Rcl�s�

�s
·
��J�t�,s�

�s
− 2i����t�,s�

	
�Rcl�s�

�s
·
��J�t,s�

�s
+ �J�t,s� · �J�t�,s�� �89�

and

FERRARI, PATUREJ, AND VILGIS PHYSICAL REVIEW E 77, 021802 �2008�

021802-8



C1 =� D�Re−�M/2L�	0
Lds	ti

tfdt���R/� t�2
. �90�

The symbol G�t , t�� denotes the propagator �62� computed
taking into account one of the boundary conditions defined in
Eqs. �84�–�87� �18�. We have thus four possibilities.

The Dirichlet-Dirichlet boundary condition is

G�t,t�� = −
L

M
��t� − t��t − ti�

�t� − tf�
tf − ti

−
L

M
��t − t���t� − ti�

t − tf

tf − ti
. �91�

The Dirichlet-Neumann boundary condition is

G�t,t�� = −
L

M
�ti − t����t − t�� −

L

M
�ti − t���t� − t� . �92�

The Neumann-Dirichlet boundary condition is

G�t,t�� =
L

M
�tf − t����t� − t� +

L

M
�tf − t���t − t�� . �93�

The Neumann-Neumann boundary condition is

G�t,t�� =
L

M
�t��t� − t� + t���t − t��� +

L

M

��t − tf�2 + �t� − tf�2�
2�tf − ti�

.

�94�

In Eqs. �91�–�94� the function ��t� is the usual � function of
Heaviside. Let us note that the function G�t , t�� of Eq. �94� is
actually a pseudo-Green function, which satisfies the equa-
tion

M

L

�2G�t,t��
�t2 = − ��t − t�� +

1

tf − ti
�95�

instead of Eq. �62�. This is due to the fact that, in the case of
Neumann-Neumann boundary conditions, one should project

out the constant solution of the eigenvalue equation associ-
ated to the operator M

L
�2

�t2 .
We remark that in the action �89� the classical conforma-

tions appear only in the derivatives
�Rcl

�s , which coincide with
the derivatives of the vectors R2,A�s� defined in Eq. �61�. In
components,

�Rcl

�s
= �cos ��s�,sin ��s�� . �96�

From Eq. �96� it is clear that the vector
�Rcl

�s has the meaning
of the unitary vector which is tangent to the classical trajec-
tories. It is therefore convenient to decompose all vectors
appearing in the action S���� in components which are nor-
mal or tangent to Rcl�s�. After some algebra, one obtains in
this way an expression of Z�J� in which now S���� takes the
simplified form

S���� =
1

2
�

0

L

ds�
ti

tf

dtdt�G�t,t���− 4�2���t,s�

	
 �2

�s2 − ����s��2����t�,s� + 2i����t,s��JT�t�,s�

+ 2i����t�,s��JT�t,s� + �J�t,s� · �J�t�,s�� . �97�

Here we have introduced the tangential component �JT�t ,s�
of the current �J�t ,s�,

�JT�t,s� = �sRcl�s� · �s�J�t,s� . �98�

At this point we are ready to eliminate the auxiliary field ��
from the functional of Eq. �88�, where now the action S����
is defined in Eq. �97�. To this purpose, one needs to perform
a Gaussian integration, which produces the result

Z�J� = C1C2e−�1/2�	0
Ldsds�	ti

tfdtdt�G�t,t���K�s,s���JT�t,s��JT�t�,s��+�1/L��J�t,s�·J�t�,s��. �99�

In the above equation K�s ,s�� denotes the Green function which satisfies the relation


 �2

�s2 − ����s��2�K�s,s�� = − ��s,s�� , �100�

while

C2 =� D��e	0
Lds	ti

tfdtdt�G�t,t��„2�2���t,s����2/�s2�−����s��2���t�,s�…. �101�

Setting this all together we obtain the expression of the generating functional ��J� in its final form,
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��J� = eAclC1C2

	exp�−
1

L
�

0

L

ds�
ti

tf

dtdt�G�t,t���J�t,s� · �J�t�,s��
	exp�−

1

2
�

0

L

dsds��
ti

tf

dtdt�G�t,t��K�s,s��

	�JT�t�,s���JT�t,s�� . �102�

The right-hand side of Eq. �102� displays the asymmetry in
the propagation of transverse and longitudinal modes.

The differential equation satisfied by the Green function
K�s ,s�� of Eq. �100� cannot be solved analytically for any
given function ��s�. Here we discuss just the case in which
the background classical solution corresponds to a chain with
the configuration of a circle, i.e.,

Rcl
circle�s� =

L

2�

cos

2�s

L
,sin

2�s

L
� . �103�

The radius of the circle is L
2� , so that the total length of the

chain is L as desired. Comparing Eq. �103� with Eq. �61�, it
is clear that for this conformation ��s�= 2�

L s. Substituting this
expression of ��s� in Eq. �100�, it turns out that the Green
function K�s ,s�� satisfies the relation


 �2

�s2 −
4�2

L2 �K�s,s�� = − ��s − s�� . �104�

The solution of the above equation corresponding to the
boundary conditions �83� is

K�s,s�� =

sinh
2�

L
�L − s���sinh

2�

L
s

2�

L
sinh 2�

��s� − s�

+

sinh
2�

L
�L − s��sinh

2�

L
s�

2�

L
sinh 2�

��s − s�� .

�105�

In the limit J�t ,s�=0, we obtain from the generating func-
tional of Eq. �102� the expression of the probability distribu-
tion � of Eqs. �51� and �52� in the semiclassical approxima-
tion

� = eAcl�Jcl=0�C1C2. �106�

Remembering the respective definitions of the constants C1
and C2 of Eqs. �90� and �101�, together with the form �78� of
the classical action, � may be explicitly written as follows:

� = exp�−
1

�
�

ti

tf

dt�
0

L

ds
 M

2L
Ṙcl

2��� D�R

	exp
−
M

2L
�

ti

tf

dt�
0

L

ds��Ṙ�2�� D��

	exp��
ti

tf

dtdt��
0

L

dsG�t,t���2�2���t,s�

	
 �2

�s2 − ����s��2����t�,s��� . �107�

VI. PHYSICAL INTERPRETATION OF THE
OBTAINED RESULTS

The classical equations of motion �55�–�57� admit only
static solutions in which the conformation of the chain is
fixed. Only rigid translations of the chain as a whole with
constant velocity V are allowed. Apart from these rigid trans-
lations, the time dependence of the classical solutions
Rcl�t ,s� in Eqs. �59� and �65� is just an artifact of the pres-
ence of the classical current J�t��Jcl�t� which is fictitious
and may thus be set to zero without any loss of generality. In
the following discussion, it will be assumed that both Jcl�t�
and V are zero. The absence of any relevant dynamics in the
classical solutions is somewhat surprising. We can only sug-
gest that this absence could be related to the fact that, after
performing the continuous limit, the fourth term appearing in
the left-hand side of Eq. �11� vanishes identically. This term
is important for the chain dynamics since it contains second
time derivatives of the angles ��t ,s�. In some sense, the con-
tinuous chain is simpler than its discrete counterpart, in
which this term is present.

Less trivial is the treatment of the fluctuations of the chain
at constant temperature T. The nonlinear � model given in
Eq. �54� or, alternatively, its formulation without the
Lagrange multiplier of Eqs. �51� and �52�, describe the fluc-
tuations of a chain of N segments of constant length a in the
continuous limit �12�. During its motion in the time interval
�ti , tf� the chain spans a two-dimensional surface which, in
the case of a closed conformation, has the topology of a
cylinder in the x ,y , t space, see Fig. 2. If the chain is open,
instead, the topology of the cylinder should be replaced with
that of a strip.

y

x

t

FIG. 2. During its motion, a closed chain spans in the x ,y , t a
surface which has the topology of a cylinder.

FERRARI, PATUREJ, AND VILGIS PHYSICAL REVIEW E 77, 021802 �2008�

021802-10



We recall that in deriving the GNLSM of Eqs. �51� and
�52� the contribution of the hydrodynamic interactions has
been neglected. This limits the validity of this model to the
following cases:

�a� The viscosity of the fluid is large, so that the motion of
the particles composing the chain is slow. Thus, the velocity
field created by each particle is too weak to influence the
motion of other particles.

�b� The temperature is low, so that once again the motion
of the chain is slow.

�c� The conformation of the chain is relatively straight
because there is some energy cost when the chain is being
bent. To this purpose, however, one should introduce the
stiffness at the joints between the segments.

On the other side, the semiclassical approximation used in
order to derive the generating functional ��J� of Eq. �107� is
valid in the case in which the parameter � defined in Eq. �49�
is small. This parameter depends essentially on the tempera-
ture T and on the relaxation time �. Since � is inversely
proportional to the viscosity in the limit of low Reynolds
number, it is reasonable to assume that the semiclassical ap-
proach can be applied to a cold isolated chain or to an iso-
lated chain in a very viscous solution. These situations cor-
respond, respectively, to the points �b� and �a� mentioned
above.

Both the generating functional ��J� of Eq. �102� and the
probability distribution of Eq. �107� have been computed in
the case of closed chains, whose conformations are subjected
to the boundary conditions �84�–�87�. The physical meaning
of these boundary conditions may be summarized as follows.

Dirichlet-Dirichlet boundary conditions. In this case
Ri�s�=R f�s�=Rcl�s�, where Rcl�s� is a given static solution
of the classical equations of motion. The probability that,
starting from the conformation Ri�s�, the fluctuating chain
ends up at the time tf in the same conformation, is propor-
tional up to a normalization constant to the probability dis-
tribution � of Eq. �107�, in which the Green function G�t , t��
is that of Eq. �91�.

Dirichlet-Neumann boundary conditions. In this case the
probability distribution � of Eq. �107� is proportional to the
probability that a closed chain starting from a classical static
conformation Ri�s�=Rcl�s� at the time ti ends up at the in-
stant tf in an arbitrary conformation characterized by the fact
that the velocities of each segment composing the chain is
zero. � must be computed choosing the Green function
G�t , t�� defined in Eq. �92�.

Neumann-Dirichlet boundary conditions. Here the seg-
ments of the chain have zero velocity at the beginning, but
the conformation of the chain is otherwise arbitrary. At the
time tf the chain is found in a given static classical confor-
mation, i.e., R f�s�=Rcl�s�. The probability for this to happen
is obtained after substituting in Eq. �107� the Green function
G�t , t�� of Eq. �93�.

Neumann-Neumann boundary conditions. This is the situ-
ation in which the conformation of the chain at the initial and
final times ti and tf are not specified, but the velocities of all
the segments composing the chains must be zero. The rel-
evant Green function G�t , t�� to be inserted in the probability
distribution � is that of Eq. �94�.

By choosing Neumann-Dirichlet boundary conditions one
may check for instance if, starting from any static conforma-
tion, there is a particular conformation in which it is very
likely that the chain will be found after a certain time tf − ti.
The stability of a given conformation with respect to the
thermodynamic fluctuations which attempt to reshape the
chain can be tested by choosing Dirichlet-Dirichlet boundary
conditions. In principle, it is also possible to study other
types of boundary conditions than those considered here,
provided they do not give rise to unwanted boundary terms
in the action of the generating functional ��J�.

To conclude this section, it is interesting to see how the
original constraint �32� is realized in the semiclassical ap-
proximation. In Eq. �81�, which gives the second-order cor-
rections to the classical action Acl, there are two Lagrange
multipliers, �� and �cl. The most relevant condition is that
imposed by ��,

Rcl� · �R� = 0. �108�

Let us note that the above relation is at the origin of the
asymmetry in the generating functional �102� between modes
which are tangent or normal to the classical background con-
formation Rcl. Equation �108� is just the approximated ver-
sion of the full constraint �32�. As a matter of fact, remem-
bering the splitting into classical solutions and statistical
corrections of Eqs. �72� and �73�, we may rewrite Eq. �32� as
follows:

�R��cl
2 + 2Rcl� · �R� + ��R��2 − 1 = 0. �109�

Due to the fact that �Rcl� �2=1 and neglecting the second-order
term ��R��2, we obtain from Eq. �109�,

2Rcl� · �R� = 0, �110�

which coincides exactly with Eq. �108�. In the case of solu-
tions of type B there is an additional constraint, which is
associated to the nonzero constant Lagrange multiplier �cl.
This constraint requires that the average over the time t and
over the chain length s of the quadratic term ��R��2 is zero,

�
ti

tf dt

tf − ti
dt�

0

L ds

L
��R��2 = 0. �111�

In the solutions of type A the above condition is not present
because in that case �cl=0.

VII. EQUILIBRIUM LIMIT OF THE GNLSM AND ITS
CONNECTION WITH THE ROUSE MODEL

First, we study the equilibrium limit of the GNLSM. We
use the formulation of the model given in Eqs. �51� and �52�.
For simplicity, we set ti=0. Thus,

� =� DR�t,s�e−�M/2L��	0
tfdt	0

LdsṘ2�t,s����R��t,s��2 − 1� .

�112�

At this point, we rescale the time variable by setting �= t
tf

, so
that the above equation becomes
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� =� DR�tf�,s�e−�M/2L�tf�	0
1d�	0

Lds��R/���2
���R��tf�,s��2 − 1� .

�113�

In the equilibrium limit tf →
 we obtain

�eq =� DReq�s����Req� �s��2 − 1� , �114�

where Req�s�=R�
 ,s�. Equation �114� is exactly what one
should expect in the case of the statistical mechanics of a
discrete chain subjected to the constraints

�Rn − Rn−1�2 = a2. �115�

The discrete probability function of the conformation of such
a chain is given by

�eq,disc = �
n=1

N � dRn�
n=2

N

�
 �Rn − Rn−1�2

a2 − 1� . �116�

In the continuous limit this becomes exactly the distribution
of Eq. �114�. This result is in agreement with the analogous
probability function given in �2�.

While the purpose of this work is to provide a path-
integral formulation of the dynamics of a freely jointed chain
without having in mind concrete applications to polymer
physics, it is interesting to explore possible connections be-
tween the GNLSM of Eqs. �51� and �52� and the Rouse
model. A direct attempt to set the Rouse model in the path-
integral form via the Martin-Siggia-Rose formalism leads to
a probability distribution for the Rouse chain which differs
profoundly from the GNLSM obtained in this work. Indeed,
let us start from the Langevin equation,

�
�R

�t
= �

�2R

�n2 + f . �117�

Here we have used instead of the arc length s the dimension-
less variable n defined as follows: s0n=s. Moreover, f
= f�t ,n� is a stochastic force with a Gaussian distribution of

width � given by e−	0
tfdt	0

L/sodn�f2/2��. � and � are constant pa-
rameters which will be specified later. After the application
of the Martin-Siggia-Rose method, one finds the Rouse prob-
ability distribution

�Rouse =� DRe−�1/2��	0
tfdt	0

L/s0dn��2��R/� t�2+�2��2R/�n2�2�.

�118�

In principle, in the exponent of the above equation there
should be the additional term

I = −
��

�
�

0

tf

dt�
0

L/s0

dn
�R

�t
·
�2R

�n2 . �119�

However, due to the fact that �R
�t · �2R

�n2 = �
�n

� �R
�n · �R

�t
�− �R

�n · �2R
�t�n and

remembering the identity �R
�n · �2R

�t�n = 1
2

�
�t

�� �R
�n

�2�, it is easy to
realize that I amounts to total derivative terms, which can be
neglected.

Coming back to Eq. �118�, we see that, while the GNLSM
is nonlinear and contains just second derivatives of the bond
vector R, the Rouse model is linear and contains derivatives
of R up to the fourth order. As an upshot, while it is possible
to investigate the Rouse model by decomposing R�t ,s� into
normal coordinates as explained in �1�, that kind of Fourier
analysis cannot be easily applied to the nonlinear GNLSM.
We show at this point that, indeed, the two models are quite
different and that it is not possible starting from one of them
to recover the probability function of the other and vice
versa, because they correspond to regimes which do not
overlap. To this purpose, instead of the constraint R�2=1 of
the GNLSM, we introduce the more general condition

R = � 1

s0
�

−s0

s0

ds�A�s���R�t,s + s�� − R�t,s���2

− a2 = 0,

�120�

where s0 is a new length scale such that

a � s0 � L �121�

and A�s�� is a function of s� normalized in such a way that

1

s0
�

−s0

s0

A�s��ds� = 1. �122�

Let us note that a is the smallest length at our disposal: Any
segment of the chain of contour length shorter than a may be
regarded as rigid. At this point, following the same strategy
used in Sec. III, we build the new distribution function

�int =� DRe−c	0
tfdt	0

LdsṘ2
��R� �123�

with c= M
4kT�L . The index “int” means that the distribution

probability �int describes a model which, as we will see,
interpolates between the GNLSM and the Rouse model.

We remark that the insertion of the � function ��R� in the
path integral �123� has a double meaning. On one side, it
may be seen as a condition on the length of the averaged
vector

S =
1

s0
�

−s0

s0

ds�A�s���R�t,s + s�� − R�t,s�� . �124�

In the above equation the distance between points of the
chain has been averaged over arc segments of length 2s0. On
the other side, the introduction of the � function ��R� may
also be related to the internal forces among the beads com-
posing the chain, which appear due to the presence of con-
straints. For example, in the case of the GNLSM the pres-
ence of these forces is evident in the formulation of Eq. �54�,
in which the free action is corrected by the addition of the
interacting term ��R�2−1�.

It is easy to realize that the GNLSM is a special case of
the model described by Eq. �123�. We must remember that in
the GNLSM the motion of the chain is observed at the small-
est available scale of distances, i.e., the segment length a.
Thus, we choose the form of the function A�s�� as follows:
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A�s�� = s0��s� − a� . �125�

As a consequence, the constraint �120� becomes �R�t ,s+a�
−R�t ,s��2−a2=0. Dividing both members of the above equa-
tion by a2 and supposing that a is very small, we obtain up to
higher-order terms in a the relation

�R��2 − 1 = 0. �126�

In the limit a=0, this is exactly the condition which has been
imposed to the chain in the GNLSM, see Eq. �32�. Using the
property of the � function, ��a2��R��2−1��= 1

a2 ���R��2−1�, it
is possible to check that also the probability distribution �int
becomes that of the GNLSM.

To obtain the Rouse model from the interpolating prob-
ability distribution �int, we need first to decrease the reso-
lution with which the segments of the chain are observed.
Accordingly, we require that the function A�s�� appearing in
the constraint �120� is constant over the whole interval
�−s0 ,s0�,

A�s�� = 1
2 . �127�

In this way, the finest details of the chain are not taken into
account, because the chain conformations are averaged over
the scale of distance 2s0, which is by hypothesis much larger
than the smallest available scale a. To pass to the Rouse
model, we must also restrict ourselves to the long-time-scale
behavior of the chain. This is achieved by assuming, follow-
ing Ref. �1� �Sec. 4.1, p. 93�, that, for long-time scales,
R�t ,s� varies slowly with s. This hypothesis allows us to stop
the expansion of R�t ,s+s�� with respect to s� at the first few
orders,

R�t,s + s�� = R�t,s� + R��t,s�s� +
R��t,s�

2
s�2 + ¯ .

�128�

Substituting the above truncated expansion in Eq. �120� and
performing the trivial integrations over s� we obtain the con-
dition

�R��t,s��2s0
4

62 − a2 = 0. �129�

Setting in the above constraint in Eq. �123�, we obtain the
following approximated expression of �int:

�int �� DRe−c	0
tfdt	0

LdsṘ2
���R��2s0

4 − a2� , �130�

where the factor 62 has been absorbed by a rescaling of the
length s0. At this point we use the fact that, apart from an
irrelevant infinite constant, the functional � function present
in Eq. �130� may be simplified as follows:

���R��2s0
4 − a2� = ���R��s0

2 − a� . �131�

A proof of this identity, which is valid up to an irrelevant
constant, will be given in Appendix B. Exploiting Eq. �131�,
the probability distribution �int of Eq. �130� becomes

�int �� DRe−c	0
tfdt	0

LdsṘ2
���R��s0

2 − a� . �132�

We may still simplify the above equation by applying the
following slightly modified version of the Gaussian approxi-
mation of the � function:

���R��s0
2 − a� � � D�e−i	0

tfdt	0
Lds���R��s0

2−a�

	e−	0
tfdt	0

Lds���2/2��+i��/����, �133�

where we have supposed that the parameter � is very large
while the ratio � /� is very small. Clearly, the usual Fourier
representation of the functional Dirac � function is recovered
in the limit �→
 and � /�→0. Up to now � is an arbitrary
parameter. We choose it in a such a way that

�

�
= a . �134�

This choice is compatible with our requirement for �, since a
is the smallest scale of lengths at our disposal, so that � /� is
a very small quantity. Using Eq. �134� in order to eliminate �
from Eq. �133�, we obtain the relation

���R��s0
2 − a� � � D�e−i	0

tfdt	0
Lds��R��s0

2
e−	0

tfdt	0
Lds�a/2���2

.

�135�

After performing the Gaussian integration over � in Eq.
�135�, we obtain

���R��s0
2 − a� � e−	0

tfdt	0
Lds��/2a��R��2s0

4
. �136�

We may now set in the above expression of the � function in
the distribution probability �int of Eq. �132�. The result is

�int �� DRe−	0
tfdt	0

Lds�cṘ2+��/2a��R��2s0
4�. �137�

This approximated probability distribution has the same
structure of that coming from the Rouse model given in Eq.
�118�.

To make the comparison with the Rouse model more ex-
plicit, we perform in Eq. �137� the substitution ns0=s,

�int �� DRe−	0
tfdt	0

L/s0dns0�cṘ2+��/2a���2R/�n2�2�. �138�

Let us now identify the coefficients appearing in Eq. �138�
with those of Eq. �118�. We recall the fact that in the case of
the Rouse model,

� =
1


, � =

3kT

s0
2 , � =

4kT


. �139�

On the other side, the parameter c in the exponent of Eq.
�138� may be written as follows: c= 1

4D . It is now easy to
verify that the probability function �Rouse of Eq. �118� and
that of Eq. �138� coincide if we make the following choice
for �: �= 9

4
a
s0

5 kT.
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VIII. CONCLUSIONS

This work may be considered as the ideal continuation of
the seminal paper of Edwards and Goodyear of Ref. �2�, in
which the problem of a chain subjected to the constraints
�38� has been investigated using an approach based on the
Langevin equation. With respect to Ref. �2�, our approach
based on the Fokker-Planck-Smoluchowski equation pro-
vides a path-integral and field theoretical formulation of the
dynamics of a freely jointed chain in the continuous limit.
The GNLSM obtained here makes possible the application of
field theoretical techniques to the study of the fluctuations of
a freely jointed chain. As an example, we have derived in the
semiclassical approximation the probability function of the
chain and the associated generating functional. The approxi-
mation used in the computation of the generating functional
is valid, for instance, in the cases of a cold isolated chain or
of a chain fluctuating in a very viscous medium.

Most of the results obtained in this paper have been dis-
cussed in the preceding two sections, so that we provide only
a short summary here.

�1� Derivation of the GNLSM, which provides a path-
integral formalism to the freely jointed chain.

�2� Computation of the partition function and of the gen-
erating functional of the GNLSM in the semiclassical ap-
proximation.

�3� The behavior of a chain at scales of length and time
which are very long has been compared with the behavior at
short scales of length and time in Sec. VII. It is shown in this
way that it is not possible to compare directly the Rouse
model and models describing a freely jointed chain, such as
the GNLSM, because the regimes and the assumptions of
these two models do not overlap. In particular, the Rouse
model considers only the long-time behavior of the chain and
long scales of distances, while in the case of the freely
jointed chain the short-time behavior is taken into account
and the chain is observed at a short scale of distance.

�4� A chain model which encompasses both the regimes of
the Rouse model and of the GNLSM has been proposed in
Eq. �123�.

�5� The equilibrium limit of the GNLSM has been recov-
ered. It gives the expected result in agreement with Ref. �2�.

�6� Last, the dynamics of a random chain has been inves-
tigated also from the classical point of view. The equivalence
of the expressions of the classical Lagrangian of the chain
computed starting from Cartesian and polar coordinates has
been verified.

To conclude, we would like to mention the problems
which are still open and possible further developments of our
work. For simplicity, we have restricted our analysis to a
two-dimensional chain. However, its extension to any dimen-
sions is not difficult. Preliminary work in three dimensions
can be found in Ref. �19�. It turns out that more dimensions
allow the possibility of performing the continuous limit in
different ways, so that one could end up with a flexible chain
or with a rigid chain which privileges only certain directions
along a fixed axis. There should be also no problem in
switching on the interactions among the beads composing
the chain. To this purpose, one may use the path-integral
methods applied to stochastic differential equations ex-

plained in Ref. �8�. Only the inclusion of the hydrodynamic
interactions requires still some work. It is not simple to pro-
vide for these interactions a Lagrangian based formulation as
that developed here for a continuous chain. However, hydro-
dynamic interactions have been already implemented in the
path-integral formalism in Ref. �20� using the Martin-Siggia-
Rose formalism. Work is in progress in order to extend the
results of �20� to the freely jointed chain discussed in this
work. Another open question is how the chain behaves in the
short time regime when it is stretching under the action of a
force. This could be interesting in the biophysics of DNA
�21�. Finally, work is in progress in order to linearize the
GNLSM applying the same approach used in the case of the
standard nonlinear � model. In this way it would be possible
to study the GNLSM as the strong coupling limit of its linear
version with the help of the techniques of Ref. �22�.
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APPENDIX A: PROOF OF EQ. (69)

In this appendix we wish to prove Eq. �69�. To this pur-
pose, we start from the path integral

I =� Dx�t,s�Dy�t,s�f�x�t,s�,y�t,s������sx�2 + ��sy�2 − 1� .

�A1�

Upon the transformation

xs�t,s� = �sx�t,s�, ys�t,s� = �sy�t,s� , �A2�

we obtain

I =� Dxs�t,s�Dys�t,s�

	�det−1 �s�2f
�
0

s

duxu�t,u�,�
0

s

duyu�t,u����xs
2 + ys

2 − 1� ,

�A3�

where we have made use of the fact that

det
 �x

�xs
�det
 �y

�ys
� = �det �s

−1�2 = �det−1 �s�2. �A4�

Now it is possible to eliminate the variable ys by performing
in I the substitution
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� = xs
2 + ys

2 − 1. �A5�

As a consequence, the path integration over ys appearing in
�A3� may be replaced by a path integration over the new
variable �,

� Dys��xs
2 + ys

2 − 1�f
�
0

s

xudu,�
0

s

yudu�
= ��

��xs
2−1

D�����det� �ys

��
�

	f
�
0

s

xudu,�
0

s

yudu��
ys=��1+�−xs

2

. �A6�

In the above equation the determinant det�
�ys

�� � is the func-
tional determinant giving the Jacobian of the transformation
�A5�, so that

det� �ys

��
� = det
 1

2�1 + � − xs
2� . �A7�

Applying Eqs. �A4� and �A6� in �A1� we obtain

I = �
xs

2−1�0
Dxs det−1��s�2 det−1�2�1 − xs

2�

	f
�
0

s

xu�t,u�du, � �
0

s

�1 − xu
2�t,u�� . �A8�

Finally, we perform in Eq. �A8� the substitution xs=cos �. In
this way I may be rewritten as a path integral over �,

I =� D� det��xs

��
�det−1��s

2�det−1�2 sin ��

	f
�
0

s

cos ��t,u�du,�
0

s

sin ��t,u�du� . �A9�

Noting that det�
�xs

�� �=−sin �, we obtain, apart from an irrel-
evant constant N=det−1��s

2�det−1 2, the final result

I = N� D�f
�
0

s

cos ��t,u�du,�
0

s

sin ��t,u�du� .

�A10�

APPENDIX B: FUNCTIONAL IDENTITY

To prove the identity �131�, we write the functional �
function on the right-hand side of Eq. �131� with the help of
its Fourier representation

���R��2s0
4 − a2� =� D�̃e−i	0

tfdt	0
Lds�̃��R��2s0

4−a2�. �B1�

Since �R��2s0
4−a2= ��R��s0

2−a���R��s0
2+a�, Eq. �B1� becomes

���R��2s0
4 − a2� =� D�̃e−i	0

tfdt	0
Lds�̃��R��s0

2−a���R��s0
2+a�.

�B2�

Due to the fact that �R��s0
2+a is always different from zero,

one may perform the change of variables,

�̃ = �̃��R��s0
2 + a� . �B3�

Applying the substitution �B3� in �B2� we obtain

���R��2s0
4 − a2� = det−1�2a����R��s0

2 − a� �B4�

which coincides with Eq. �131� up to the irrelevant constant
det−1�2a�.
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